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The ps transient absorption spectra of the ethyletioporphyrin 
(EEP)-toluqunone (TQ) system were measured with a micro­
computer-controlled Nd3+:YAG laser photolysis system.5 In 
acetone (Figure 1), where EEP fluorescence is almost completely 
quenched by TQ, the transient spectra are very similar to the Sn 

«— S1 spectra of EEP itself. We obtained the decay time of this 
transient absorbance as robsd « 70 ps, which was in approximate 
agreement with the value (~80 ps) estimated from the relation 
TcaicdSi = T 0 / ( 1 + &qT0[TQ]) with T0 and kq values determined 
in the present work. These results indicate that the excited EEP 
in acetone is quenched by encounter collision with TQ but the 
produced ion pair is immediately deactivated without producing 
separated ion radicals. Moreover, an examination of the 
ground-state absorption spectra and the relationship between 
fluorescence yield and [TQ] reveals that about 66% of EEP forms 
a ground-state loose complex with TQ in acetone.6 In the light 
of the above results of ps transient absorption studies, this fact 
leads to the conclusion that the loose complex undergoes ultrafast 
deactivation via a solvated ET state or ion-pair state immediately 
after excitation. 

Contrary to the above results, the ps transient absorption spectra 
in benzene (Figure 2) are quite different from the Sn <- S1 spectra 
of EEP. The absorption band shows a maximum aroung 650-700 
nm, and its intensity drops strongly in the longer wavelength side 
(in contrast to the EEP Sn — S1 spectra, which show a flat band 
in this region) and is similar to that of porphyrin cation.7 

Moreover, it has been confirmed that about 90% of EEP forms 
a loose complex in benzene solution.6 Since the TQ anion does 
not show an absorption band in this wavelength region, the 
transient absorption spectra in Figure 2 can be assigned to the 
exciplex (EEP+-TQ") formed by the excitation of the loose com­
plex. We obtained the decay time of this exciplex as robsd « 40 
ps. This Tobsd is much shorter than the r^^S] (~ 130 ps) obtained 
by assuming encounter collisional quenching. 

The above results provide a direct connection between the 
porphyrin-quinone system and the typical exciplexes. Although 
it is rather short-lived, the porphyrin-quinone exciplex can be 
observed in nonpolar solvents, while the photoinduced ET state 
undergoes ultrafast deactivation to the ground state in polar 
solvents. Solvation in the ET state lowers its energy but lifts up 
the energy of the neutral ground state compared to that relaxed 
with respect to solvation,3e which results in a very small energy 
gap between two states leading to the ultrafast deactivation in 
the porphyrin-quinone system.6 We have confirmed the same 
result also in the excited EDA complex of pyromellitic di-
anhydride-pyrene.8 However, the energy gap in the case of typical 
exciplexes such as pyrene-DMA or -DCNB is not so small, 
according to our estimate of the solvation energy.6,8 

We have examined also the exciplex systems of the cyclophane 
type face to face porphyrin dimer (FTFP) (etioporphyrins com­
bined by two (CH2)2-CO-NR-(CH2)2 chains) and TQ. The ps 
transient absorption spectra of the FTFP-TQ system in benzene 
can be assigned to the exciplex (FTFP+-TQ") since they are similar 
to that of the FTFP cation,7c the decay time of which was shorter 
than 25 ps according to our measurement. The shorter Tobsd 

compared to the EEP-TQ system can be ascribed to the faster 
nonradiative deactivation owing to the smaller energy gap between 
the ET and ground states for the FTFP-TQ system, since the 
oxidation potential of FTFP is a little lower than that of the EEP, 
according to our measurement. The lower oxidation potential 
indicates some derealization interaction between two porphyrin 
rings. Therefore, the derealization of positive charge over two 
porphyrin rings has little effect for lengthening the ET state 
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lifetime. In acetone, no ET state was observed due to the ultrafast 
deactivation. 

The above results clearly demonstrate the crucial role of a polar 
environment that causes ultrafast deactivation of porphyrin-
quinone ET state. This finding is very important for designing 
biomimetic artificial photosynthetic systems. 
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Microorganisms utilize chorismate (1) for the biosynthesis of 
tryptophan.1 The initial enzymatic reaction, the conversion of 
1 to anthranilate (2), is catalyzed by anthranilate synthase, and 
the amide nitrogen of glutamine serves as the nitrogen source.2,3 

The enzyme from Serratia marcescens and other enteric bacteria 
has two subunits. One subunit (AS I) catalyzes the conversion 
of 1 and NH3 to 2 and pyruvate. The other subunit (AS II) serves 
as the glutamine amidotransferase. It has been established that 
the nitrogen atom becomes attached at C-2 of I,4 and the C-2 
hydrogen atom of 1 is not incorporated into the pyruvate formed 
in the reaction.5,6 

Amino acid 3 (Scheme I) has been postulated as the inter­
mediate in the biosynthesis of 2 from I,4,7 but attempts to isolate 
an intermediate have not been successful.8 It has been suggested 
that the stereochemistry of 3 ought to be cis rather than trans.la 

The isolation of 7ra«j-2,3-dihydro-3-hydroxyanthranilic acid from 
a strain of Streptomyces aureofaciens,9 however, suggests that 
3 is the metabolic intermediate. Described below are our synthesis 
of (±)-3 and the enzyme-catalyzed transformation of 3 to 2 with 
5. marcescens AS I from a plasmid-containing E. coli strain.10 

Carbamate 5 (Scheme II), prepared in 10% yield from the 
Diels-Alder reaction of methyl propiolate and /ert-butyl trans-
1,3-butadiene-l-carbamate,11 was epoxidized (m-chloroperoxy-
benzoic acid, CH2Cl2), and the epoxide was isomerized to 612 with 
l,3-diazabicyclo[5.4.0]undec-7-ene in THF (40% from 5). Re-
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action of 6 with dimethyl diazomalonate and 1 mol % Rh2(OAc)4 

in benzene at 65 0C gave 7 (56%).13 Reaction of 7 with 
Eschenmoser's salt [CH2=N(CH3)2

+r , (C2H5)3N, CH2Cl2] and 
quaternization of the Mannich base (CH3I, CH2Cl2) provided 8 
(100%). Base-induced fragmentation (1.5 equiv of NaOH, 
THF/H 2 0, 0 0C, 45 min) gave 914 (46%). Saponification of 9 
(2.2 equiv of NaOH, THF/H 2 0 , 4 0C, 40 h) followed by acid­
ification with Amberlite IR-120 resin afforded 10 (94%). 
Treatment of 10 with dry, freshly distilled CF3CO2H (TFA) at 
O 0C for 15 min followed by workup gave salt 3-TFA (43%).15-16 

To test compound 3 as a potential intermediate in the enzymic 
biosynthesis of anthranilate from chorismate and ammonia, 
samples of the trifluoroacetate salt, 3-TFA, were incubated with 
pure S. marcescens AS I enzyme.17 For comparison chorismate,18 

with or without ammonia, was used as control substrate. Com­
pound 3 was an excellent substrate, undergoing enzymic conversion 
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to anthranilate19 in the absence of NH4
+ with a Km of 0.2 mM 

and Kmax of 300 (nmol/min)/mg enzyme compared to a Km of 
0.11 mM and Kmax of 500 (nmol/min)/mg for the natural sub­
strate chorismate17,20 in the presence of ammonia. In the absence 
of NH4

+ ions, chorismate gave no anthranilate. Addition of 50 
mM NH4

+ to enzymic incubations of 3-TFA did increase Kmax 

values ca. 2-fold such that under these conditions 3-TFA was 
processed to anthranilate at higher Kn̂ x than chorismate so 3-TFA 
is both a kinetically and chemically competent candidate for a 
reaction intermediate. 

It was anticipated that anthranilate synthase would act stere-
ospecifically on only one of the enantiomers of (±)-3-TFA, pre­
sumably the 5S,6S isomer. In incubations containing 0.2-3.2 mM 
3-TFA15 with varying enzyme levels, we routinely observed 24-27% 
conversion in the absence of NH4

+ and 35% in the presence of 
NH4

+ by fluorescence assay.17 In parallel incubations where 
coproduct pyruvate (4) was monitored by coupled in situ reduction 
by L-lactate dehydrogenase and NADH, 34-35% conversions were 
detected, with or without added NH4

+ . This is substantial con­
version but less than 50% for reasons as yet unclear.21 

In sum, compound 3 is processed enzymically to anthranilate 
by the S. marcescens synthase at rates that support its role as 
reaction intermediate and thereby substantiate the mechanism 
of Scheme I for this enzyme, with trans geometry in the amino 
enol pyruvyl intermediate. 
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Despite the importance of iron in biological, organometallic, 
and coordination chemistry, only limited studies of 57Fe N M R 
have been reported.2"7 57Fe, the only isotope of iron suitable for 
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